A New Class of Acyclic 2-Alkyl-1,1,2-Triaryl (Z)-Olefins as Selective Cyclooxygenase-2 Inhibitors

Md. Jashim Uddin,[†] P. N. Praveen Rao,[†] Robert McDonald,[‡] and Edward E. Knaus^{*,†}

Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8, and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

Received June 18, 2004

A new class of acyclic (Z)-2-alkyl-1,2-diphenyl-1-(4-methanesulfonylphenyl)ethenes (7) was designed for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1 and COX-2 isozyme inhibition structure—activity studies identified (Z)-1,2-diphenyl-1-(4-methane-sulfonylphenyl)oct-1-ene (7d) as a potent COX-2 inhibitor (IC₅₀ = 0.42 μ M) with a high COX-2 selectivity index (SI > 234). In a carrageenan-induced rat paw edema assay, (Z)-7d exhibited excellent antiinflammatory activity (ID₅₀ = 1.1 mg/kg). The molecular modeling and structure—activity data acquired indicate that (Z)-olefins having cis C-1 4-methanesulfonylphenyl and C-2 unsubstituted phenyl (or 4-acetoxyphenyl) substituents in conjunction with a C-1 phenyl ring and a C-2 alkyl substituent of appropriate length constitute a suitable template for the design of a novel class of acyclic (Z)-2-alkyl-1,1,2-triaryleth-1-ene COX-2 inhibitors.

Introduction

A number of tricyclic selective cyclooxygenase-2 (COX-2) inhibitors represented by celecoxib (1) and rofecoxib (2) are effective antiinflammatory and analgesic agents with reduced gastrointestinal (GI) toxicity profiles (see structures 1-4 in Chart 1, Supporting Information).^{1,2} Tricyclic molecules possessing 1,2-diaryl substitution on a central heterocyclic, or carbocyclic, ring system represent a major class of selective COX-2 inhibitors. It is known that *cis*-stilbene derivatives which possess vicinal diaryl moieties along with a COX-2 pharmacophore such as SO_2Me or SO_2NH_2 at the para-position of one of the aromatic rings retains COX-2 inhibitory potency and selectivity (3).³ In this regard, an acyclic triaryl olefin is an attractive target for the rational design of selective COX-2 inhibitors since the presence of a central C=C bond should provide the necessary geometry for the appropriately substituted vicinal diaryl rings to interact favorably with the COX-2 binding site. Accordingly, in a previous study, we showed that an appropriately substituted acyclic triaryl olefin (4) serves as a suitable template to design potent COX-2 selective inhibitors.⁴ Some structurally related stilbenes derived from tamoxifen bearing a thiomethyl substituent exhibit anticancer activity.⁵ We now report the design, synthesis and biological evaluation of a novel class of acyclic triaryl (Z)-olefins possessing an appropriately substituted *p*-SO₂Me COX-2 pharmacophore.

Chemistry. A Zn–TiCl₄-catalyzed McMurry reaction of 4-methanesulfonylbenzophenone **5**⁶ and an alkanophenone (**6**, R¹ = Et, *n*-propyl, *n*-butyl, *n*-hexyl, *n*-octyl) afforded the target olefins **7** (R¹ = Et, *n*-propyl, *n*-butyl, *n*-hexyl, *n*-octyl) with predominant (*Z*)-selectivity (**7e**, R¹ = *n*-octyl, *Z*:*E* ratio = 4:1). The undesired homocoupled olefinic products formed in this reaction were

^a Reagents and conditions: (a) Zn, TiCl₄, THF, reflux 4.5 h.

separated from the desired cross-coupled mixture of (Z)and (E)-olefins (7a-e). Subsequent fractional recrystallizations of the predominant (Z)-isomer from the (Z): (E) mixture of cross-coupled olefin (7) provided the respective target (Z)-olefin 7a-e in 62-65% isolated yield (Scheme 1). The structures of the (Z)-olefin products were consistent with their spectral and microanalytical data. The absolute stereochemistry of (Z)-7a $(R^1 = Et)$ was unambiguously confirmed by a singlecrystal X-ray analysis (see Chart 1 in Supporting Information). The mechanism of this McMurry olefination reaction proceeds via a titanium-induced deoxygenation of the bidentate pinacolic intermediate that is formed by homolytic coupling of two radical anion species generated from reduction of carbonyl compounds.⁷ Although the mechanism of (Z)-stereocontrol for this olefination reaction is not fully understood, it is plausible that there is a preferred orientation of the substituted phenyl ring of ketone 5 and the unsubstituted phenyl ring of ketone 6 in the transient titanium pinacolate, whereby these two rings are oriented on the same side by a weak interaction.⁸ On the other hand,

^{*} To whom correspondence should be addressed. Phone: 780-492-5993. Fax: 780-492-1217. E-mail: eknaus@pharmacy.ualberta.ca.

[†] Faculty of Pharmacy and Pharmaceutical Sciences.

[±] Department of Chemistry.

Scheme 2^a

 a Reagents and conditions: (a) Zn, TiCl4, THF, reflux 4.5 h; (b) AcCl, TEA, ether, 25 °C, 1.5 h.

the intermediate (Z)-olefins **9** ($\mathbb{R}^1 = \mathbb{E}t$, *n*-butyl) were generated in situ using a (Z)-stereocontrolled McMurry reductive cross-coupling reaction⁹ of 4-methanesulfonylbenzophenone **5** and a 4-hydroxyalkanophenone (**8**, $R^1 = Et$, *n*-butyl). Subsequent acetylation of intermediates 9 afforded the target (Z)-acetoxyphenyl products 10a,b ($\mathbb{R}^1 = \mathbb{E}t$, *n*-butyl) in 62-67% overall yield (Scheme 2).¹⁰ In regard to the stereochemical aspects of this latter (Z)-stereocontrolled olefination reaction, it has been proposed that the (Z)-isomer arises from a consecutive induction by the active Ti° surface to the polydentate pinacolic intermediate formed by a homolytic coupling of a radical anion species generated from reduction of the two carbonyl compounds,¹¹ prior to subsequent demetalation and deoxygenation reactions.¹² In this regard, the 'phenoxy-Ti-sulfone' induction plays the key role for (Z)-stereoselection by forcing the phenoxy and sulfone moieties to be positioned on the same side (cis) to each other.⁹

Results and Discussion

In a previous study we demonstrated that simple acyclic triaryl olefins exhibit selective COX-2 inhibition when (i) two geminal unsubstituted phenyl substituents are present at the C-1 position, (ii) a 4-methanesulfonylphenyl substituent is located at the C-2 position, and (iii) a *n*-alkyl substituent of appropriate chain length is attached to the C-2 position.⁴ Initial structure– activity relationship (SAR) studies, where the length of the C-2 alkyl substituent was varied, indicated that maximal COX-2 inhibitory potency (IC₅₀ = 0.014 μ M) and selectivity (SI > 7142) was exhibited by 1,1-diphenyl-2-(4-methanesulfonylphenyl)hex-1-ene (4) having a C-2 *n*-butyl side chain.⁴ This initial study has now been extended to include the design of a related group of olefinic regioisomers of compound 4 possessing (i) an

absolute (Z)-stereochemistry, (ii) a 4-methanesulfonylphenyl ring located at the C-1 position, (iii) two vicinal unsubstituted phenyl rings present at the C-1 and C-2 positions, and (iv) a *n*-alkyl substituent of appropriate chain length attached to the C-2 position. In vitro COX-1 and COX-2 enzyme inhibition studies showed that (Z)-olefinic analogues possessing short hydrophobic alkyl side chains (7a, $R^1 = Et$; COX-2 IC₅₀ = 3.2 μ M, COX-1 IC₅₀ > 100 μ M; **7b**, R¹ = *n*-propyl; $COX-2 IC_{50} = 2.8 \,\mu M$, $COX-1 IC_{50} > 100 \,\mu M$) exhibited comparable activity profiles (Table 1). A similar enzyme inhibition assay showed that the olefin (Z)-7c (\mathbb{R}^1 = *n*-butyl) was a nonselective COX inhibitor. As the alkyl substituent chain length was increased, COX-2 inhibitory potency and selectivity also increased substantially with (Z)-7d ($\mathbb{R}^1 = n$ -hexyl, COX-2 IC₅₀ = 0.42 μM , COX-1 IC₅₀ > 100 μ M; COX-2 SI > 234), exhibiting a potency and selectivity similar to the reference drug rofecoxib (COX-2 IC₅₀ = $0.5 \,\mu$ M, COX-1 IC₅₀ > 100 μ M; COX-2 SI > 200). A further increase in alkyl chain length provided (Z)-7e ($\mathbb{R}^1 = n$ -octyl, COX-1 IC₅₀ > 100 μ M, COX-2 IC₅₀ 3.1 μ M, COX-2 SI > 32.4) that showed a dramatic decrease in COX-2 potency and selectivity since it was 6-fold less potent and selective than rofecoxib. A molecular modeling study where the triary (Z)-olefin (Z)-7d ($\mathbb{R}^1 = n$ -hexvl) was docked in the COX-2 binding site showed (Figure 1) that (Z)-7d binds in the center of the primary binding site such that the C-1 4-methanesulfonylphenyl ring is oriented toward the COX-2 secondary pocket, and the p-SO₂Me pharmacophore is interacting with the amino acid residues lining the COX-2 binding site (Val⁵²³, Phe⁵¹⁸, Gln¹⁹², Arg^{513} , and His^{90}). One of the O-atoms of the SO₂Me group forms a hydrogen bond with the backbone NH of Phe^{518} (distance = 2.18 Å). In addition, a weak hydrogen bonding interaction was observed between the other O-atom of the SO₂Me moiety and the NH of His⁹⁰ (distance = 4.01 Å). The unsubstituted C-2 phenyl ring that is cis to the C-1 p-MeSO₂-phenyl substituent is oriented toward the apex of the COX-2 primary binding site in the vicinity of Leu³⁸⁴, Tyr³⁸⁵, and Trp³⁸⁷ and about 5.9 Å from the OH of Ser⁵³⁰. The C-2 *n*-hexyl chain is appropriately oriented in a hydrophobic region closer to the mouth of the COX-2 binding site comprised of Leu⁵³¹, Ile³⁴⁵, Val³⁴⁹, and Leu³⁵⁹ (distance < 5 Å). The C-1 unsubstituted phenyl ring, that is cis to the C-2 *n*-hexyl substituent, is oriented toward the mouth of the COX-2 binding site (Tyr³⁵⁵ and Arg¹²⁰). The distance between the center of the C-1 phenyl ring and the NH_2 of Arg^{120} is about 6.3 Å.

Our previous molecular modeling studies on the regioisomeric acyclic triaryl olefins possessing a p-SO₂-Me COX-2 pharmacophore at the C-2 phenyl ring of the central C=C had shown that the C-2 p-SO₂Me COX-2 pharmacophore was oriented favorably within the COX-2 secondary pocket. In addition, due to the regioisomeric placement of the p-SO₂Me COX-2 pharmacophore, the C-2 n-alkyl chain was oriented toward a pocket comprised of Tyr³⁵⁵, Arg¹²⁰, Leu³⁵⁹, and Val³⁴⁹ closer to the mouth of the COX-2 active site.⁴ It is significant to note that for this class of acyclic triaryl olefins, the regioisomeric placement of the p-SO₂Me pharmacophore either at the C-1 or C-2 position of the central C=C

Table 1. In Vitro COX-1/COX-2 Enzyme Inhibition Assay Data for (Z)-Olefins 7a–e, 10a,b and in Vivo Antiinflammatory and Analgesic Activity Assay Data for (Z)-Olefins 7a, 7e, and 10a

						analgesic activity d	
compd	\mathbb{R}^1	$\begin{array}{c} \text{COX-1:} \\ \text{IC}_{50} (\mu \text{M})^a \end{array}$	$\begin{array}{c} \text{COX-2:} \\ \text{IC}_{50} (\mu \text{M})^a \end{array}$	$\begin{array}{c} { m COX-2:} \\ { m SI}^b \end{array}$	AI activity: ^c ID ₅₀ (mg/kg)	% inhibition (30 min)	% inhibition (60 min)
(Z)-7a	\mathbf{Et}	>100	3.2	>31	1.9	38.8 ± 6.8	50.0 ± 11.7
(Z)-7b	n-C ₃ H ₇	>100	2.8	>35	-	-	-
(Z)-7c	n-C ₄ H ₉	30	10	3	-	-	-
(Z)-7d	n-C ₆ H ₁₃	>100	0.42	>234	1.1	33.3 ± 13.6	35.4 ± 19.3
(Z) -7 \mathbf{e}	n-C ₈ H ₁₇	>100	3.1	>32	-	-	-
(Z)- 10a	Et	0.25	0.05	5	1.3	60.0 ± 6.8	57.5 ± 5.6
(Z)-10b	n-C ₄ H ₉	>100	1.1	>95	-	-	-
celecoxib	-	33.1	0.07	472	10.8	69.3 ± 12.1^{e}	79.5 ± 2.0^{e}
rofecoxib	_	>100	0.50	>200	-	-	_
aspirin	_	0.35	2.4	0.14	_	—	_

^{*a*} The in vitro test compound concentration required to produce 50% inhibition of COX-1 or COX-2. The result (IC₅₀, μ M) is the mean of two determinations. ^{*b*} Selectivity Index (SI) = COX-1 IC₅₀/COX-2 IC₅₀. ^{*c*} Inhibitory activity in a carrageenan-induced rat paw edema assay. The results are expressed as the ID₅₀ value (mg/kg) at 3 h after oral administration of the test compound. ^{*d*} Inhibitory activity in the rat 4% NaCl-induced abdominal constriction assay. The results are expressed as the mean % inhibition value \pm SEM (n = 4) following a 5 mg/kg oral dose of the test compound. ^{*e*} 50 mg/kg oral dose.

Figure 1. Molecular modeling (docking) of (Z)-7d in the binding site of murine COX-2. Hydrogen atoms of the amino acid residues have been removed to improve clarity.

yielded compounds possessing good COX-2 inhibitory potency and selectivity.

The COX-1 and COX-2 inhibition studies of the 4-acetoxyphenyl compound (Z)-10a ($\mathbb{R}^1 = \mathrm{Et}$) showed that it is a potent (COX-2 IC₅₀ = 0.05 μ M; COX-1 IC₅₀ = 0.25 μ M), but moderately selective (SI = 5), COX-2 inhibitor (Table 1). It is noteworthy that (Z)-10a is a 60-fold more potent COX-2 inhibitor than the parent olefin (Z)-7a ($\mathbb{R}^1 = \mathrm{Et}$). Replacement of the ethyl substituent at the C-2 position by a *n*-butyl group [(Z)-10b, $\mathbb{R}^1 = n$ -butyl] increased COX-2 selectivity (COX-1 IC₅₀ > 100 μ M; COX-2 SI > 95) but decreased COX-2 potency (IC₅₀ = 1.1 μ M). Comparison of this *p*-OAc (Z)-olefin (10b) showed it is 9-fold more potent and 31-fold more selective than the parent (Z)-7c ($\mathbb{R}^1 = n$ -butyl) (Table 1).

Pharmacological studies were carried out to assess the in vivo antiinflammatory (AI) and analgesic activity of some of the most potent and selective COX-2 inhibitors [(Z)-7a, (Z)-7d, (Z)-10a] based on in vitro enzyme inhibition data (Table 1). In a carrageenan-induced rat paw edema assay, the 1,1,2-triarylbut-1-ene $[(Z)-7a, ID_{50} = 1.9 \text{ mg/kg}]$ and 1,1,2-triarylbut-1-ene $[(Z)-7d, ID_{50} = 1.1 \text{ mg/kg}]$ compounds having a C-2 phenyl substituent, and the but-1-ene having a C-2 4-acetoxyphenyl moiety $[(Z)-10a, ID_{50} = 1.3 \text{ mg/kg}]$ all exhibited superior AI activity relative to the reference drug celecoxib ($ID_{50} = 10.8 \text{ mg/kg}$). In a rat model 4% NaCl-induced abdominal constriction assay, a 5 mg/kg po dose of (Z)-7a, (Z)-7d, or (Z)-10a exhibited good analgesic activities (43–63% range), that are comparable to celecoxib, at 30 or 60 min postdrug administration.

Conclusions

A new class of acyclic (*Z*)-2-alkyl-1,2-diphenyl-1-(4methanesulfonylphenyl)ethenes have been designed. In vitro enzyme inhibition studies showed that COX-2 inhibitory potency and selectivity was dependent upon the alkyl substituent chain length at the C-2 position of the C=C bond. In this regard, the triaryl olefin **7d** [(*Z*)-1,2-diphenyl-1-(4-methanesulfonylphenyl)oct-1-ene, R¹ = *n*-hexyl] exhibited optimal COX-2 inhibitory potency (IC₅₀ = 0.42 μ M) and selectivity (COX-2 SI > 234). The structure-activity relationship data acquired show that appropriately substituted acyclic (*Z*)-olefins have the necessary geometry to provide potent and selective inhibition of the COX-2 isozyme, and that they exhibit excellent in vivo antiinflammatory and analgesic activities.

Experimental Section

General Procedure for the Synthesis of 1,2-Diphenyl-1-(4-methanesulfonylphenyl)alkyl-1-enes (7a-e). TiCl₄ (1.83 mL, 13 mmol) was added dropwise to a stirred suspension of Zn powder (1.7 g, 26.5 mmol) in dry THF (30 mL), under Ar at -10 °C, and after the addition was completed the reaction mixture was refluxed for 2 h. A solution of 4-methanesulfonylbenzophenone (5, 0.86 g, 3.3 mmol) and an alkanophenone (6a-e, 3.3 mmol) in THF (65 mL) were added to a cooled suspension of the titanium reagent at 0 °C, and the reaction mixture was refluxed for 2.5 h. After cooling to 25 °C, the reaction mixture was poured into a 10% aqueous K₂CO₃ solution (100 mL), this mixture was stirred vigorously for 5 min, and the dispersed insoluble material was removed by vacuum filtration through a pad of Celite 545. The organic layer was separated and the aqueous layer was extracted with EtOAc (3 \times 50 mL). The combined organic fractions were washed with water (10 mL), and the organic fraction was dried (Na₂SO₄). Removal of the solvent in vacuo gave a residue from which the undesired homocoupled olefinic products were separated from the desired cross-coupled mixture of (Z)- and (*E*)-olefinic products (7) using *n*-hexanes–EtOAc (3:1, v/v) as eluant. Subsequent fractional recrystallizations (two or three) of this (Z):(E) mixture of olefins (7) from EtOH (95% w/v) afforded the respective (*Z*)-olefin product $7\mathbf{a}-\mathbf{e}$. The physical, spectroscopic, and microanalytical data for (Z)-7a is as follows: Yield, 62%; white crystals; mp 178-180 °C; IR (film): 1151, 1324 (SO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 0.95 (t, 3H, J = 7.3 Hz, CH_2CH_3), 2.50 (q, 2H, J = 7.3 Hz, CH_2CH_3), 2.96 (s, 3H, SO₂CH₃), 7.05–7.42 (m, 12H, phenyl hydrogens and 4-methanesulfonylphenyl H-2, H-6), 7.56 (d, 2H, J = 8.2 Hz, 4-methanesulfonylphenyl H-3, H-5); $^{13}\mathrm{C}$ NMR (CDCl_3): δ 13.4 (CH₂CH₃), 29.2 (CH₂CH₃), 44.4 (SO₂CH₃), 126.4, 126.8, 127.1, 128.1, 128.4, 129.4, 131.45 (Carom-H), 137.0, 137.2, 141.0, 141.1, 145.0, 148.8 (Carom-C; Colefin-C; Carom-S). Anal. (C23H22O2S·1/ 3H₂O): C, H.

General Procedure for the Synthesis of (Z)-2-(4-Acetoxyphenyl)-1-(4-methanesulfonylphenyl)-1-phenylalkyl-1-enes (10a,b). TiCl₄ (1.83 mL, 13 mmol) was added dropwise to a stirred suspension of Zn powder (1.7 g, 26.5 mmol) in dry THF (30 mL) under an argon atmosphere at -10 °C, and this mixture was heated at reflux for 2 h to produce the titanium reagent. A cooled suspension of this titanium reagent was added to a solution of 4-methanesulfonylbenzophenone (5, 0.86 g, 3.3 mmol) and the respective 4-hydroxyalkanophenone (8a,b, 3.3 mmol) in THF (65 mL) at 0 °C, and the reaction was allowed to proceed at reflux for 2.5 h. After cooling to 25 °C, the reaction mixture was poured into a 10% aqueous K₂-CO₃ solution (100 mL), this mixture was stirred vigorously for 5 min, and the dispersed insoluble material was removed by vacuum filtration through a Celite 545 pad. The organic fraction was separated, the aqueous layer was extracted with EtOAc $(3 \times 50 \text{ mL})$, and the combined organic fractions were dried (Na₂SO₄). Removal of the solvent in vacuo afforded the respective 4-hydroxyphenyl olefinic intermediate (9, $R^1 = Et$, *n*-butyl), which was dissolved in ether (10 mL), and triethylamine (0.5 g, 5.0 mmol) was added. Acetyl chloride (0.39 g, 5.0 mmol) was added dropwise at 0 °C, and the reaction was allowed to proceed at 25 °C for 1.5 h with stirring prior to quenching with water (20 mL). The organic layer was separated, the aqueous layer was extracted with EtOAc (3 \times 30 mL), the combined organic fractions were washed with water (10 mL), and the organic fraction was dried (Na₂SO₄). Removal of the solvent in vacuo gave a residue that was purified by silica gel flash column chromatography using n-hexanes-EtOAc (3:1, v/v) as eluant to afford the respective product (Z)olefin product 10a,b. The physical, spectroscopic and microanalytical data for (Z)-10a is as follows: Yield, 62%; white solid; mp 140-142 °C; IR (film): 1148, 1320 (SO₂), 1746 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 0.96 (t, 3H, J = 7.3 Hz, CH₂CH₃), 2.28 (s, 3H, $COCH_3$), 2.49 (q, 2H, J = 7.3 Hz, $C=C-CH_2$), 2.97 (s, 3H, SO_2CH_3), 6.78 (d, 2H, J = 8.2 Hz, 4-acetoxyphenyl H-3, H-5), $7.05-7.41 (m,\,9H,\,phenyl\,hydrogens,\,4\text{-methanesulfonylphenyl}$ H-2, H-6 and 4-acetoxyphenyl H-2, H-6), 7.59 (d, 2H, J = 8.2Hz, 4-methanesulfonylphenyl H-3, H-5). Anal. (C₂₅H₂₄O₄S): C, H.

Molecular Modeling (Docking) Study. Docking experiments were performed using Insight II software Version 2000.1 (Accelrys Inc.) running on a Silicon Graphics Octane 2 R14000A workstation according to a previously reported method.⁴

In Vitro Cyclooxygenase Inhibition Assays. The ability of the test compounds listed in the Table 1 to inhibit ovine COX-1 and COX-2 (IC₅₀ values, μ M) was determined using an enzyme immuno assay (EIA) kit (catalog number 560101, Cayman Chemical, Ann Arbor, MI) according to our previously reported method.¹³ **Antiinflammatory Assay.** Antiinflammatory activity was measured using a carrageenan-induced rat paw edema assay according to a previously reported procedure.¹⁴

Analgesic Assay. Analgesic activity was determined using a 4% sodium chloride-induced writhing (abdominal constriction) assay previously reported.¹⁵

Acknowledgment. We are grateful to (i) the Canadian Institutes of Health Research (CIHR) (MOP-14712) for financial support of this research, and (ii) the Alberta Heritage Foundation for Medical Research (AHFMR) for a postdoctoral fellowship award (to M. J. U.), and a graduate scholarship (to P. R.).

Supporting Information Available: Structures for compounds 1-4 (Chart 1), spectroscopic data (IR, ¹H NMR, ¹³C NMR) for the (Z)-olefins **7b**-e (Scheme 1) and **10b** (Scheme 2), the X-ray crystal data for compound (Z)-**7a**, and microanalytical data are available free of charge on the Internet at http://pubs.acs.org.

References

- Silverstein, F. E.; Faich, G.; Goldstein, J. L.; Simon, L. S.; Pincus, T.; Whelton, A.; Makuch, R.; Eisen, G.; Agrawal, N. M.; Stenson, W. F.; Burr, A. M.; Zhao, W. W.; Kent, J. D.; Lefkowith, J. B.; Verburg, K. M.; Geis, G. S. Gastrointestinal toxicity with celecoxib vs nonsteroidal antiinflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: a randomized controlled trial. JAMA 2000, 284, 1247–1255.
- (2) Bombardier, C.; Laine, L.; Reicin, A.; Shapiro, D.; Burgos-Vargas, R.; Davis, B.; Day, R.; Ferraz, M. B.; Hawkey, C. J.; Hochberg, M. C.; Kvien, T. K.; Schnitzer, T. J. Group comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. N. Engl. J. Med. 2000, 343, 1520– 1528.
- (3) Atkinson, J. G.; Wang, Z. Stilbene derivatives useful as cyclooxygenase-2 inhibitors. World Patent WO 96/13483, 9th May, 1996; *Chem. Abstr. 125*, 114294.
- (4) Uddin, M. J.; Rao, P. N. P.; Knaus, E. E. Design of acyclic triaryl olefins: a new class of potent and selective cyclooxygenase-2 (COX-2) inhibitors. *Bioorg. Med. Chem. Lett.* 2004, 14, 1953– 1956.
- (5) McCague, R.; Leclercq, G.; Legros, N.; Goodman, J.; Blackburn, G. M.; Jarman, M.; Foster, A. B. Derivatives of tamoxifen. Dependence of antiestrogenicity on the 4-substituent. J. Med. Chem. 1989, 32, 2527-2533.
- (6) Balfe, M. P., Dabby, R. E.; Kenyon, J. Alkyl oxygen fission in carboxylic esters. Part VIII. Esters of p-methylthio and pmethanesulfonyldiphenylcarbinols. J. Chem. Soc. 1951, 382– 385.
- (7) Detsi, A.; Koufaki, M.; Calogeropoulou. Synthesis of (Z)-4hydroxytamoxifen and (Z)-2-[4-[1-(p-hydroxyphenyl)-2-phenyl]-1-butenyl]phenoxyacetic acid. J. Org. Chem. 2002, 67, 4608-4611.
- (8) Coe, P. L.; Scriven, C. E. Crossed coupling of functionalized ketones by low valent titanium (the McMurry reaction): a new stereoselective synthesis of tamoxifen. J. Chem. Soc., Perkin Trans. 1 1986, 475-477.
- (9) Uddin, M. J.; Rao, P. N. P.; Knaus, E. E. Methylsulfonyl and hydroxyl substituents induce (Z)-stereocontrol in the McMurry olefination reaction. Synlett 2004, 1513-1516.
- (10) Rahim, M. A.; Praveen Rao, P. N.; Knaus, E. E. Isomeric acetoxy analogues of rofecoxib: A novel class of highly potent and selective cyclooxygenase-2 inhibitors. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 2753–2756.
- McMurry, J. E. Carbonyl-coupling reactions using low-valent titanium. Chem. Rev. 1989, 89, 1513-1524.
 McMurry, J. E.; Fleming, M. P.; Kees, K. L.; Krepski, L. R.
- (12) McMurry, J. E.; Fleming, M. P.; Kees, K. L.; Krepski, L. R. Titanium-induced reductive coupling of carbonyls to olefins. J. Org. Chem. 1978, 43, 3255–3266.
 (13) Rao, P. N. Praveen; Amini, Mohsen; Li, Huiying; Habeeb, Amgad
- (13) Rao, P. N. Praveen; Amini, Mohsen; Li, Huiying; Habeeb, Amgad G.; Knaus, Edward E. Design, synthesis, and biological evaluation of 6-substituted-3-(4-methanesulfonylphenyl)-4-phenylpyran-2-ones: A novel class of diarylheterocyclic selective cyclooxygenase-2 inhibitors. J. Med. Chem. 2003, 46, 4872–4882.
- Winter, C. A.; Risley, E. A.; Nuss, G. W.; Carrageenan-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. *Proc. Soc. Exp. Biol. Med.* **1962**, *111*, 544–552.
 Fukawa, K.; Kawano, O.; Hibi, M.; Misaka, N.; Ohba, S.;
- (15) Fukawa, K.; Kawano, O.; Hibi, M.; Misaka, N.; Ohba, S.; Hatanaka, Y. Method for evaluating analgesic agents in rats. *J. Pharmacol. Methods* **1980**, *4*, 251–259. IM04050203

JM049523Y